
N92"14211

A Bandwidth Efficient Coding Scheme for the Hubble Space Telescope

Steven S. Pietrobon

University of South Australia
The Levels, South Australia 5095

Australia

Daniel J. Costello, Jr.

University of Notre Dame
Notre Dame, Indiana 46556

U.S.A.

1 SUMMARY

As a demonstration of the

performance capabilities of trellis codes
using multidimensional signal sets, a
Viterbi decoder for one of the codes in

[1] was designed. The choice of code was
based on two factors.

The first factor was its

application as a possible replacement for
the coding scheme currently used on the
Hubble Space Telescope (HST). The HST at
pt'_sent uses the rate 1/3 v = 6 (with
2--= 64 states) convolutional code with
BPS K modulation. With the modulator

restricted to 3 Msym/s, this implies a
data rate of only 1 Mbit/s, since the
bandwidth efficiency K = 1/3 bit/sym.
This is a very bandwidth inefficient
scheme, although the system has the
advantage of simplicity and large coding
gain.

The basic requirement from NASA was
for a scheme that has as large a K as
possible. Since a satellite channel was
being used, 8PSK modulation was selected.
This allows a K of between 2 and 3

bit/sym. The next influencing factor was
INTELSAT's intention of transmitting the
SONET 155.52 Mbit/s standard data rate

over the 72 MHz transponders on its
satellites. This requires a bandwidth

efficiency of around 2.5 bit/sym. A

$

This work was supported in part by NASA
Grant NAG5-557 and in part by OTC Limited

under Project 1662.

Reed-Solomon block code is used as an

outer code to give very low bit error
rates (BER).

The 16 state rate 5/6, 2.5 bit/sym,
4D-8PSK trellis code from [1] was
selected. This code has reasonable

complexity and has a coding gain of
4.8 dB compared to uncoded 8PSK [2]. This
trellis code also has the advantage that
it is 45 ° rotationally invariant. This
means that the decoder needs only to

synchronise to one of the two naturally
mapped 8PSK signals in the signal set.

2 ENCODER IMPLEMENTATION

At first, a systematic encoder was
used in the design. However, it was found
that in designing a Viterbi decoder, it
would be simpler if a non-systematic
convolutional encoder was used. This is
because the state transitions in a

non-systematic encoder are highly
structured, compared with the almost
"random" transitions of a systematic
encoder.

To convert the systematic encoder

to a non-systematic form, the technique
described in [3] is used. This method
uses the fact that the impulse response
of each shift register in a

non-systematic encoder will produce
output sequences that are equivalent to
the generator polynomials. Since a
systematic encoder must also produce the

same sequences, it is relatively easy to
find k linearly independent output

sequences from a systematic encoder that

75

mod-8
adder

x 5

4
x

3
x

2
x

1
x

z 5

z 4

z 3

z 2
1

z

z 0 II

II
E2 E1 Eo

y2 ylylO y2 lyO2Y2 2

Non-systematic Convolutional Encoder Multi-D Signal Set Mapper

Differential Encoder

Figure 1: Non-systematic encoder block diagram
for the 16 state 2.5 bit/sym 4D-8PSK trellis code.

can be used as generators of a
non-systematic encoder.

There is usually more than one set
of possible generator polynomials. The
pplynomials ale chosen so that the inputs
x'(D) and x'(D) are affected by a 45 °
phase rotation in the same way as in a
systematic encoder. Thus, the
differential encoder for the systematic
code can also be used for the non-

systematic encoder. The non-systematic
encoder equations that were found for the
4D-8PSK code are

z2(D) = x2(D) • (D 2 @ 1)xl(D), (la)

zl(D) = D2x2(D) • (D 2 _ D • 1)xl(D), (lb)

z°(D) = Dx2(D). (lc)

Figure 1 illustrates the new

non-systematic encoder. After _ 45 ° phase
rotation, we have z (D) = z2(D),

zl(D) = zl(D) _ I(D), and z6(D) = z°(D).
r r

xR2_tating he equatioqs in i (1) gives
D) = x-(D) and x'(D) = x(D) _ I(D),

r r

tb_e same as for the systematic encoder.
The encoder uses a Phase Locked

Loop (PLL) to generate the two times

clock for transmitting, the two 2D
symbols. This PLL is based on the
74HC4046 Integrated Circuit (IC). The
encoder is able to accept data either
serially or in five bit bytes.

3 DECODER IMPLEMENTATION

Due to the complexity of the

decoder design, only a brief description
is given here. As such, only the
important design decisions are described.

To reduce the cost of the codec, a
serial implementation of the decoder was
chosen. That is, one clock cycle would be
required for each state of the code.
Since there are 16 states, at least 16

clock cycles are required to process each
received 4D point. As will be described
in more detail later, an extra seven

clock cycles are required for start-up
purposes. Thus, a total of 23 clock
cycles are required for each iteration of
the Viterbi algorithm.

The technology and clock speed in
our design is the same as used in another
Viterbi decoder designed by the author
[4]. This gave us greater confidence that

76

f Si nalSet{l Minimum]
 Syn'gchronizor - S Me cl Select State

t (sss) I"-1 I
1 _/_ State Metrics (SM)

Branch [State I Survivor I

iandQorPha_ Metric _ Metric .. D_Sequence {Calculator CffsC_l_)or Path Declsmns (P Memory
(BMC) (SSM)

Branch

^1 ^2X,X
w

Branch
Serial decoded dataPoint

/

Selector _ Parallel decoded data
(BPS)]-

Figure 2: Block diagram of a Viterbi decoder for the 16 state 2.5 bit/sym 4D-8PSK trellis code.

the design would work, even though the
actual design is twice as complicated.
Our design uses a 10 MHz clock (giving
100 ns clock cycles) and Schottky 'I'YL
logic for its ease of use and large
variety of functions. The actual
technologies used are 74LS (Low-power
Schottky TTL) for non-time critical
sections of the circuit and 74F (Advanced

Schottky TTL) for time critical sections.
Other technologies are used for functions
not available in 74F or 74LS.

The decoder is operated
asynchronously to the received data
clock. This requires one of the seven
extra clock cycles described above.
Internally, the decoder operates
synchronously to the 10 MHz clock. The
decoder starts operation after detecting
the first rising edge of the received 4D
symbol clock. After 23 clock cycles, the
decoder stops and waits for the next
rising edge of the 4D symbol clock. This
allows the decoder to operate at any data
rate from 0 to 2.1 Mbit/s.

Each iteration of the Viterbi

algorithm decodes five bits for each
received 4D signal point (since the code
rate is 5/6). The maximum 4D symbol rate
of the decoder is the internal clock

speed divided the number of clock cycles
required to decode the five bits, i.e.,

4.35x105 4D s.ymbols per second.
Therefore, the maximum bit rate of the
decoder is 2.17 Mbit/s. For the HST, this

code could achieve a data rate up to 7.5
Mbit/s. For actual use on the HST, it is

intended that the decoder would be

implemented on a VLSI chip, where the
required decoding speed would be
achieved.

There are six main sections in the
Viterbi decoder. These are

• Branch Metric Calculator (BMC)
• State Metric Calculator (SMC)
• Survivor Sequence Memory (SSM)
• Signal Set Synchronisor (SSS)
• Minimum State Metric Selector (MSMS)
• Branch Point Selector (BPS)

Figure 2 illustrates a block diagram of
the decoder. The above sections are
described as follows.

3.1 Branch Metric Calculator

For each transition of the trellis

there are 8 parallel paths (due to the
three unchecked bits in the encoder). The
BMC must determine which of the paths is
closest to the received 4D signal point
(the Branch Point (BP)) as well as the
Branch Metric (BM) for this path. The BM
can be calculated in a number of ways.
The optimum BM's for AWGN channels with
quantisation are log-likelihood metrics
[4]. Alternatively, one could make an
approximation based on the squared
Euclidean distance between the received

point and the points along the
transitions.

In our design we have chosen to use
Read Only Memory's (ROM's) to store the

77

precalculated BP (three bits are used to
represent each parallel path) and BM
(based on log-likelihood metrics). The
encoder can produce one of eight (i.e.,

2 _÷!) sets of parallel paths (each

containing 8 paths). The BP and BM must
be determined for each of these eight
sets of parallel paths.

We have chosen four bits to

represent the BM value. This gives a BM
range from 0 (closest to the received 4D
point) to 15 (furthest from the 4D
point). Decoder simulations in [5] for
another multi-D trellis code indicate

that this amount of quantisation results
in little performance degradation.

To minimise the number of address

bits to the ROM, each received 2D signal
point has been quantised to seven bits.
After extensive simulations in [5] for a
6D-8PSK trellis code, it was found that

pie-chart or angular quantisation results
m the least performance degradation (0.2
to 0.3 dB for five bit quantisation). The
simulations included the "dartboard"

quantisation pattern proposed in [1].
Each ROM therefore has an address

space of 14 bits (seven bits for each 2D
symbol). The ROM's used for the BMC are
32K×8 27C256's. A total of 6 ROM's were

used, two for determining the BP's and
four for the eight BM's.

Alternative BMC schemes which

exploit the finite length trellis
structure of the parallel transitions
were also considered. That is, a Viterbi
like decoder can be used to decode the

parallel transitions. However, their
large complexity (in a discrete
implementation) led us to choose the
simpler ROM look-up method. For a VLSI
implementation, though, the trellis
decoding method would be preferable due
to the flexibility that VLSI provides in

of all paths leading into a particular
state. Since the code has two checked

bits, there are four paths leading into
each state (since we choose the closest

path among the 8 parallel paths in the
BMC). For each of the four paths, we must
add the BM for that path to its
corresponding SM (also known as the old
SM) from the previous iteration. The new
SM for the four paths leading into a
state is the smallest of these

summations. This path is selected and all
other paths are eliminated. This is
called the Add-Compare-Select (ACS)
operation.

With four paths into each state a
4:i ACS circuit is required. With 16
states in our code, the ACS operation
needs to be performed 16 times
(explaining the need for 16 clock
cycles). The ACS circuit also produces
two Path Decision (PD) bits which

indicate which of the four paths was
chosen. This information is passed to the
SSM where it is stored.

Since the decoder operates
serially, only one ACS circuit is
required. The 16 SM's are stored in two
74AS870 dual 16x4 static Random Access

Memory (RAM) chips. Eight bits are used
to represent each SM. As shown in [5] for
a 6D-8PSK trellis code, this is more than

enough bits when two's complement
arithmetic is used in the ACS circuit to

prevent overflow [4]. Before the first
new SM can be calculated, four old SM's
are read out from the RAM's. This takes

four clock cycles. It takes another two
clock cycles to perform the ACS
operation. To achieve a slightly higher
speed, we could have done the ACS
operation in one clock cycle. However,
this would have required six comparator
chips to find the minimum SM. An increase

designing
decoder

implemented on a single chip.

circuits. Thus, the Viterbi of one clock cycle and the use of three

(with the BMC) could be comparator chips was chosen to decrease
the complexity of the design.

3.2 State Metric Calculator

The SMC updates the State Metrics
(SM) for each state of the code in each

iteration of the Viterbi algorithm. A SM
is an indication of how close the

received sequence is to the closest path

Another clock cycle is used to
write to the other half of the dual 16x4
RAM's. Since all the read and ACS

operations are pipelined, an additional
15 clock cycles are required to write the
15 remaining new SM's. In the next
iteration of the algorithm we read from
where the SM's were written in the

78

previous iteration and write to where the
old SM's had been stored. The process
then repeats.

For the ACS circuit, the
appropriate BM's must be added to the
correct old SM's. Twelve quad 2:1
multiplexer chips and a copy of the
convolutional encoder are needed to
accomplishthis task.

3.3 Survivor SequenceMemory

The SSM has two tasks. It must
store the Path Decisions (PD's) generated
by the SMC and "traceback" through the
previously stored PD's t_ determiine the
final decoded bits for x and x. This
requires alternating write and read (for
the traceback) operations on the memory.
The traceback depth is the required
number of PD sets (each set consists of
16 two bit PD's) that the SSM must trace
back through.

The PD's must be stored in the
remaining 16 clock cycles that are
available. There are two ways this can be
achieved. Storing two PD bits in each
clock cycle or storing four PD bits in
every other cycle, leaving the alternate
cycle to perform part of the traceback.
With the fu'st method at least two

separate memories are required since the
traceback operation cannot be performed
simultaneously with the storage of the
new set of PD's (due to the design of
memory chips). Since there is a finite
amount of memory, the oldest PD set must
be written over.

There is usually a point where one
method is better than the other (in terms
of the total memory size required) based
on the number of clock cycles available
and the traceback depth. A traceback
depth of around 25 to 30 results in
little performance degradation [5].

Comparing the implementation complexity
of the two methods, the alternating
read/write method proved superior.

With this design only eight clock
cycles are available to perform a
traceback. To maintain integer power of 2
address spaces for the memories (and thus
efficiently use of practical memory
designs), a traceback depth of seven is
used for each SSM memory chip. To achieve

the required traceback depth, four 64x4
memories are required. This gives a
traceback depth of 28. The traceback is
performed in a pipelined fashion,
switching between memories when required
and waiting for the next received set of
data to continue with the traceback. Four

separate memories are required since
there are four tracebacks in operation at
any one time.

Since there are no 64x4 RAM's

commercially available, larger 256×4
93422A RAM's were used. This chip has
separate input and output data buses
which simplifies the SSM design. We use
the state with the smallest SM to start
the traceback. This is the best state the

SSM could start with (since it
corresponds to the path that is closest
to the received signal) and helps give
the decoder a slight performance
improvement over choosing a random or a
fixed state. The Minimum State Metric

Selector (MSMS) provides the information
needed to achieve this.

At the correct time and pla_e in
_e circuit, the two decoded bits x and
x are produced. The two bits are passed
to the Branch Point Selector (BPS) where
they are re-encoded to select one of the
eight 3 bit branch points. The branch
points are delayed by 34 4D symbol
periods, 28 due to the traceback, 4 due
to the pipeline delay in the traceback,
and 2 due to the re-encoding of the
decoded data.

The five decoded bits are then

differentially decoded (optional) and
then parallel to serial converted for the
final decoder output. Precoding and
postdecoding are optional as there are
some communication systems that do not
require phase synchronisation. For
example, a burst modem can provide phase
information in the preamble of a burst. A
74HC4046 PLL is used to generate the
required five times clock for the serial
data. This PLL is tuned to lock within 0

to 2 MHz, but as expected for PLL's the
lower frequency limit will be somewhat
greater than DC. The decoded data is also
available in five bit bytes.

79

3.4 Signal Set Synchroniser

The SSS has the task of
synchronising the decoder to the received
sequence of 2D symbols. Since the signal
set consists of two 2D signals, the
decoder must synchronise to one of the
two possible ways the received data can
arrive.

The decoder is asynchronously
locked to DATCLK, which is the received

2D symbol clock whose frequency has been
divided by two. A delay of zero or one 2D
symbol periods of DATCLK is used for
timing synchronisation.

The SSS works by examining the rate
of increase of the minimum SM from the
MSMS. If the rate is high, this indicates
that the decoder is out of synch and
needs to be resynchronised. A variable
threshold in the SSS is used for this

purpose. If the threshold is exceeded,

the SSS will toggle into the "arm symbol
toggel" state.

If the threshold is again exceeded
in the next V (V is a variable from 0 to
63) 4D symbol periods the decoder will
toggle the 2D symbol delay (from zero to

one or one to zero). The SSS then ignores
the decoder for 128+V 6D symbol periods
to allow the decoder to settle into its

new signal set configuration.
If the threshold is not exceeded

the SSS will "disarm" and return to its
normal monitoring state.

4 OTHER DECODER FEATURES

The encoder and decoder are mounted

within a 3U high 19 inch rack. On the
front panel, two Light Emitting Diodes
(LED's) are used to indicate the 2D
symbol delay.

To test the decoder, the 2D symbol
delay can be independently set to manual
control. In this way, the SSS can be
isolated from the rest of the circuitry
so that any problems with the rest of the
decoder can be fixed without the SSS
interfering. It can also be used to test

the SSS by manually introducing delays
into the received signal. There are two
switches used for this.

Two rotary type switches are used
to select the format of the received

data. One switch is used to select

between 3 bit phase (corresponding to
hard decision), 7 bit phase quantisation,
5 bit I and Q quantisation, or internal
loopback mode. The other switch selects

between signed magnitude, reverse binary,
straight binary, or two's complement data
formats for I and Q received data.

There are also switches for
disabling the postdecoder from the
decoder and the precoder from the
encoder. The encoder has another switch

to select between five bit parallel or
bit serial data. The decoder also has a
reset button to force all the SM's to
zero. The encoder/decoder interface
diagram is given in Figure 3.

Rx_I/Rx_Q/Rx Phase

Rx_sym_clk

Auto_synch_(off/on)
Manual_synch_(1/2)

Reset

Diff dec (off/on)
Synch_t_eshold _ 0.

Synch_span -£...
Operation _

(loopback/I and Q/|

hard phase/soft phase) |_
I_and_Q_type

(two's comp/sign mag/|
complement/binary) [

Tx data_parallelS-J,--,,
"l_-x_data_serial .----.

Tx_clk

Diff enc (off/on)-----
Input_(5 bit/serial)

Viterbi decoder

Rx_data__parallel
Rx_clk_parallel
Rx_data_serial
Rx elk serial
Rx_error

Synch_state

_ Internal loop back connection

-__ _-_Tx_sy_

Encodo

Figure 3: Viterbi decoder/encoder interface

diagram for 16 state 2.5 bit/sym 4D-8PSK
trellis code.

The 159 integrated circuits of the

design are placed on two double height
Speedwire Eurocards (233.4x220 mm).
Speedwire allows quick and reliable

connections (if it is done correctly)
between the chips that can be easily
changed. The speedwire boards also have
good groundplanes, critical when

operating at high clock speeds. The
Viterbi decoder (which operates at 10

MHz) is placed on one board (taking 96
chips) while the encoder, SSS, and

various interface chips are placed on the

80

other board.
BNC connectors are used at the back

of the rack for external data and clock
connections. It is assumed that all
received data changes on the rising edge
of its clock. Similarly, the codec

produces its signals in the same format.
TTL 75 f_ interface signals are used for
these external interfaces.

6 CONCLUSIONS

A serial implementation of a
Viterbi decoder for the 16 state 2.5

bit/sym code with a 4D-8PSK signal set
has been described. This decoder can

provide high data rates (up to 2.1
Mbit/s) and is intended for future use on
the Hubble Space Telescope. Due to its
serial implementation the decoder design
is quite complex, but could be
implemented on a single VLSI integrated
circuit.

The Branch Metric Calculator has

been implemented through the use of large
look-up table ROM's. A VLSI

implementation may use a Viterbi type
decoding algorithm to allow single chip

implementation.

REFERENCES

[1] Pietrobon, S.S., R.H. Deng, A. Laf-
anech_re, G. Ungerboeck, and D.J.
Costello, Jr., "Trellis-coded multi-
dimensional phase modulation," IEEE
Trans. Inform. Theory, vol. 36, pp.
63-89, Jan. 1990.

[2] Perez, L., "On the performance of
multi-dimensional phase modulated
trellis codes," NASA Tech. Report
#89-10-02, Oct. 1989.

[3] Porath, J.E., "Algorithms for
converting convolutional codes from
feedback to feedforward form and vice

versa," lEE Electron. Lett., voi.25,

pp. 1008-1009, 20 Jul. 1989.

[4] Pietrobon, S.S., "Rotationally inv-
ariant convolutional codes for MPSK

modulation and implementation of Vit-
erbi decoders," M.Eng. Thesis, School
of Electron. Eng., South Australian
Inst. of Technol. (now University of
South Australia), Adelaide, Austra-
lia, Jun. 1988.

[5] Gray, P.K., I.S. Morrison, and W.
G. Cowley, "The development of a 45
Mbit/s modem/codec," Proc. IREECON-

'89, pp. 942-945, Melbourne, Austra-
lia, Sep. 1989.

81

